gwlearn.linear_model.GWLogisticRegression

gwlearn.linear_model.GWLogisticRegression#

class gwlearn.linear_model.GWLogisticRegression(bandwidth, fixed=False, kernel='bisquare', n_jobs=-1, fit_global_model=True, measure_performance=True, strict=False, keep_models=False, temp_folder=None, batch_size=None, **kwargs)[source]#
__init__(bandwidth, fixed=False, kernel='bisquare', n_jobs=-1, fit_global_model=True, measure_performance=True, strict=False, keep_models=False, temp_folder=None, batch_size=None, **kwargs)[source]#

Methods

__init__(bandwidth[, fixed, kernel, n_jobs, ...])

fit(X, y, geometry)

Fit the geographically weighted model

predict(X, geometry)

predict_proba(X, geometry)

Predict probabiliies using the ensemble of local models

fit(X, y, geometry)[source]#

Fit the geographically weighted model

Parameters:
Xpd.DataFrame

Independent variables

ypd.Series

Dependent variable

geometrygpd.GeoSeries

Geographic location