gwlearn.search.BandwidthSearch#
- class gwlearn.search.BandwidthSearch(model, fixed=False, kernel='bisquare', n_jobs=-1, search_method='golden_section', criterion='aic', min_bandwidth=None, max_bandwidth=None, interval=None, max_iterations=100, tolerance=0.01, verbose=False, **kwargs)[source]#
Optimal bandwidth search for geographically-weighted models
Minimises one of AIC, AICc, BIC based on prediction probability on focal geometries.
- Parameters:
- model
model
class
Scikit-learn model class
- fixedbool,
optional
True for distance based bandwidth and False for adaptive (nearest neighbor) bandwidth, by default False
- kernel
str
,optional
type of kernel function used to weight observations, by default “bisquare”
- n_jobs
int
,optional
The number of jobs to run in parallel.
-1
means using all processors by default-1
- fit_global_modelbool,
optional
Determines if the global baseline model shall be fitted alognside the g eographically weighted.
- **kwargs
Additional keyword arguments passed to
model
initialisation
- model
- __init__(model, fixed=False, kernel='bisquare', n_jobs=-1, search_method='golden_section', criterion='aic', min_bandwidth=None, max_bandwidth=None, interval=None, max_iterations=100, tolerance=0.01, verbose=False, **kwargs)[source]#
Methods